23,882 research outputs found

    Evidence for GeV emission from the Galactic Center Fountain

    Get PDF
    The region near the Galactic center may have experienced recurrent episodes of injection of energy in excess of \sim 1055^{55} ergs due to repeated starbursts involving more than \sim 104^4 supernovae. This hypothesis can be tested by measurements of γ\gamma-ray lines produced by the decay of radioactive isotopes and positron annihilation, or by searches for pulsars produced during starbursts. Recent OSSE observations of 511 keV emission extending above the Galactic center led to the suggestion of a starburst driven fountain from the Galactic center. We present EGRET observations that might support this picture.Comment: 5 pages, 1 embedded Postscript figure. To appear in the Proceedings of the Fourth Compton Symposiu

    Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts

    Get PDF
    While many models have been proposed for GRBs, those currently favored are all based upon the formation of and/or rapid accretion into stellar mass black holes. We present population synthesis calculations of these models using a Monte Carlo approach in which the many uncertain parameters intrinsic to such calculations are varied. We estimate the event rate for each class of model as well as the propagation distance for those having significant delay between formation and burst production, i.e., double neutron star (DNS) mergers and black hole-neutron star (BH/NS) mergers. For reasonable assumptions regarding the many uncertainties in population synthesis, we calculate a daily event rate in the universe for i) merging neutron stars: ~100/day; ii) neutron-star black hole mergers: ~450/day; iii) collapsars: ~10,000/day; iv) helium star black hole mergers: ~1000/day; and v) white dwarf black hole mergers: ~20/day. The range of uncertainty in these numbers however, is very large, typically two to three orders of magnitude. These rates must additionally be multiplied by any relevant beaming factor and sampling fraction (if the entire universal set of models is not being observed). Depending upon the mass of the host galaxy, half of the DNS and BH/NS mergers will happen within 60kpc (for a Milky-Way massed galaxy) to 5Mpc (for a galaxy with negligible mass) from the galactic center. Because of the delay time, neutron star and black hole mergers will happen at a redshift 0.5 to 0.8 times that of the other classes of models. Information is still lacking regarding the hosts of short hard bursts, but we suggest that they are due to DNS and BH/NS mergers and thus will ultimately be determined to lie outside of galaxies and at a closer mean distance than long complex bursts (which we attribute to collapsars).Comment: 57 pages total, 23 figures, submitted by Ap

    The Production of Ti44 and Co60 in Supernova

    Full text link
    The production of the radioactive isotopes 44^{44}Ti and 60^{60}Co in all types of supernovae is examined and compared to observational constraints including Galactic γ\gamma--ray surveys, measurements of the diffuse 511 keV radiation, γ\gamma--ray observations of Cas A, the late time light curve of SN 1987A, and isotopic anomalies found in silicon carbide grains in meteorites. The (revised) line flux from 44^{44}Ti decay in the Cas A supernova remnant reported by COMPTEL on the Compton Gamma-Ray Observatory is near the upper bound expected from our models. The necessary concurrent ejection of 56^{56}Ni would also imply that Cas A was a brighter supernova than previously thought unless extinction in the intervening matter was very large. Thus, if confirmed, the reported amount of 44^{44}Ti in Cas A provides very interesting constraints on both the supernova environment and its mechanism. The abundances of 44^{44}Ti and 60^{60}Co ejected by Type II supernovae are such that gamma-radiation from 44^{44}Ti decay SN 1987A could be detected by a future generation of gamma-ray telescopes and that the decay of 60^{60}Co might provide an interesting contribution to the late time light curve of SN 1987A and other Type II supernovae. To produce the solar 44^{44}Ca abundance and satisfy all the observational constraints, nature may prefer at least the occasional explosion of sub-Chandrasekhar mass white dwarfs as Type Ia supernovae. Depending on the escape fraction of positrons due to 56^{56}Co made in all kinds of Type Ia supernovae, a significant fraction of the steady state diffuse 511 keV emission may arise from the annihilation of positrons produced during the decay of 44^{44}Ti to 44^{44}Ca. The Ca and Ti isotopic anomalies in pre-solar grains confirm the production of 44^{44}Ti in supernovae and thatComment: 27 pages including 7 figures. uuencoded, compressed, postscript. in press Ap

    Monopoles and dyons in SO(3) gauged Skyrme models

    Get PDF
    Three dimensional SO(3) gauged Skyrme models characterised by specific potentials imposing special asymptotic values on the chiral field are considered. These models are shown to support finite energy solutions with nonvanishing magnetic and electrix flux, whose energies are bounded from below by two distinct charges - the magnetic (monopole) charge and a non-integer version of the Baryon charge. Unit magnetic charge solutions are constructed numerically and their properties characterised by the chosen asymptotics and the Skyrme coupling are studied. For a particular value of the chosen asymptotics, charge-2 axially symmetric solutions are also constructed and the attractive nature of the like-monopoles of this system are exhibited. As an indication towards the possible existence of large clumps of monopoles, some consideration is given to axially symmetric monopoles of charges-2,3,4.Comment: 15 pages, 4 Postscript figure

    The County Surveyor\u27s Organization for Field and Office Work

    Get PDF

    Probing the evolving massive star population in Orion with kinematic and radioactive tracers

    Get PDF
    We assemble a census of the most massive stars in Orion, then use stellar isochrones to estimate their masses and ages, and use these results to establish the stellar content of Orion's individual OB associations. From this, our new population synthesis code is utilized to derive the history of the emission of UV radiation and kinetic energy of the material ejected by the massive stars, and also follow the ejection of the long-lived radioactive isotopes 26Al and 60Fe. In order to estimate the precision of our method, we compare and contrast three distinct representations of the massive stars. We compare the expected outputs with observations of 26Al gamma-ray signal and the extent of the Eridanus cavity. We find an integrated kinetic energy emitted by the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent with the energy thought to be required to create the Eridanus superbubble. We also find good agreement between our model and the observed 26Al signal, estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion region. Our population synthesis approach is demonstrated for the Orion region to reproduce three different kinds of observable outputs from massive stars in a consistent manner: Kinetic energy as manifested in ISM excavation, ionization as manifested in free-free emission, and nucleosynthesis ejecta as manifested in radioactivity gamma-rays. The good match between our model and the observables does not argue for considerable modifications of mass loss. If clumping effects turn out to be strong, other processes would need to be identified to compensate for their impact on massive-star outputs. Our population synthesis analysis jointly treats kinematic output and the return of radioactive isotopes, which proves a powerful extension of the methodology that constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page

    Photospheric Emission in the Joint GBM and Konus Prompt Spectra of GRB 120323A

    Full text link
    GRB 120323A is a very intense short Gamma Ray Burst (GRB) detected simultaneously during its prompt gamma-ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Wind satellite. GBM and Konus operate in the keV--MeV regime, however, the GBM range is broader both toward the low and the high parts of the gamma-ray spectrum. Analysis of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. We performed time-integrated and coarse time-resolved spectral analysis of GRB 120323A prompt emission. We conclude that the analyses of GBM and Konus data are only consistent when using a double-hump spectral shape for both data sets; in contrast, the single-hump of the empirical Band function, traditionally used to fit GRB prompt emission spectra, leads to significant discrepancies between GBM and Konus analysis results. Our two-hump model is a combination of a thermal-like and a non-thermal component. We interpret the first component as a natural manifestation of the jet photospheric emission.Comment: 7 pages of article (3 figures and 1 table) + 3 pages of Appendix (3 figures). Submitted to ApJ on 2017 March 2

    Gamma ray pulsar analysis from photon probability maps

    Get PDF
    A new method is presented of analyzing skymap-type gamma ray data. Each photon event is replaced by a probability distribution on the sky corresponding to the observing instrument's point spread function. The skymap produced by this process may be used for source detection or identification. Most important, the use of these photon weights for pulsar analysis promises significant improvement over traditional techniques
    corecore